
iterators.md 3/14/2021

Alexander Kosik - 1 / 3

A short summary of todays session about iterators

Assume we have a class Sentence which will consist of words. If we write the class like this it will not be

iterable like e.g. a list.

class Sentence:
 def __init__(self, text):
 self.words = text.split()

s = Sentence("the quick brown fox")
for word in s:
 print(word)

If we execute the code above we will get a TypeError. Our object is not iterable.

So, how can we make a class iterable?

To make a class iterable it must implement the dunder method __iter__() which must return an

iterator.

What is an iterator, you may ask? An iterator is an object through which we can access elements of another

object. In our sentence example the iterator is an object, which will deliver us words from our sentence

object.

class Sentence:
 def __init__(self, text):
 self.words = text.split()

 def __iter__(self):
 """ Lets implement the iter method to make our sentence iterable
"""
 return iter(self.words)

s = Sentence("the quick brown fox")
for word in s:
 print(word)

The easiest way to do this is to use an iterator from a existing structure from which we know that we can

iterate over. In our example we have the attribute words which is a list of words from our sentence. We can

get an iterator from the list by calling the builtin function iter() on our self.words list.

With this simple implementation we can make our Sentence iterable and iterate over it.

What exactly is an iterator?

An iterator is an object fullfilling the iterator protocol as described here. The iterator protocols

requires us to implement two methods: __next__ and __iter__.

https://docs.python.org/3/library/stdtypes.html#iterator-types

iterators.md 3/14/2021

Alexander Kosik - 2 / 3

If we would create an iterator from scratch for our Sentence type it would propably look like this:

import re

class SentenceIterator:
 """ Didactic example: Implementation of the iterator protocol for a
sentence type as described in the GoF book.
 You would propably never do this in production code.
 """
 def __init__(self, sentence):
 self.words = sentence.words
 self.pos = 0

 def __next__(self):
 try:
 word = self.words[self.pos]
 self.pos += 1
 return word
 except IndexError:
 raise StopIteration()

 def __iter__(self):
 return self

class Sentence:
 RE_WORD = re.compile("\w+")

 def __init__(self, sentence):
 self.words = Sentence.RE_WORD.findall(sentence)

 def __iter__(self):
 return SentenceIterator(self)

s = Sentence("the quick brown fox")
for word in s:
 print(word)

Using generators as iterators

Generators behave like iterators so we can use them everywhere we need an iterator.

We can create generators using generator function or generator expressions. In this example we

will just focus on generator functions.

Generator functions

the presence of yield makes a function a generator function

the function will not yield the return value directly, instead creates a generator object

a generator object behaves like an iterator

iterators.md 3/14/2021

Alexander Kosik - 3 / 3

a generator object is exausted after usage

Using a generator function as iterator would look like this:

import re
RE_WORD = re.compile("\w+")

class Sentence:
 def __init__(self, sentence):
 self.words = RE_WORD.findall(sentence)

 def __iter__(self):
 # every function that contains a yield is automatically a generator
function
 for word in self.words:
 yield word

s = Sentence("the quick brown fox")
 for word in s:
 print(word)

